Towards a Bayesian Approach to Robust Finding Correspondences in Multiple View Geometry Environments

نویسندگان

  • Cristian Canton-Ferrer
  • Josep R. Casas
  • Montse Pardàs
چکیده

This paper presents a new Bayesian approach to the problem of finding correspondences of moving objects in a multiple calibrated camera environment. Moving objects are detected and segmented in multiple cameras using a background learning technique. A Point Based Feature (PBF) of each foreground region is extracted, in our case, the top. This features will be the support to establish the correspondences. A reliable, efficient and fast computable distance, the symmetric epipolar distance, is proposed to measure the closeness of sets of points belonging to different views. Finally, matching the features from different cameras originating from the same object is achieved by selecting the most likely PBF in each view under a Bayesian framework. Results are provided showing the effectiveness of the proposed algorithm even in case of severe occlusions or with incorrectly segmented foreground regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Optimal Desirability Approach for Multiple Responses Optimization with Multiple Productions Scenarios

  An optimal desirability function method is proposed to optimize multiple responses in multiple production scenarios, simultaneously. In dynamic environments, changes in production requirements in each condition create different production scenarios. Therefore, in multiple production scenarios like producing in several production lines with different technologies in a factory, various fitted r...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

Multiple view geometry estimation based on finite-multiple evolutionary agents for medical images

In this paper we present a new method for the robust estimation of the trifocal tensor, from a series of medical images, using finite-multiple evolutionary agents. Each agent denotes a subset of matching points for parameter estimation, and the dataset of correspondences is considered as the environment in which the agents inhabit, evolve and execute some evolutionary behavior. Survival-of-fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005